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Nonvacuum Taub-Type Cosmological Model 
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The Einstein universe is a simple model describing a static cosmological space- 
time, having a constant radius and a constant curvature, and, as is well known, 
it does not describe our universe. We propose a model which is an extension 
of Einstein's. Our metric, having R x S 3 topology, describes a nonisotropic 
homogeneous closed (finite) universe of Bianchi type IX. This metric is similar 
to that of Taub, but is simpler. Unlike the Taub solution (which is a cosmological 
extension of the NUT solution), however, the universe described by our metric 
contains matter. Like the Taub metric, our metric has two positive constants 
(z, T). The gravitational red shift calculated from our metric is given. Similarly 
to the Schwarzschild metric, which has a "singularity" at r = 2m, this metric has 
the same kind of"singularity" at t = 2r. The maximal extension of the coordinates 
in our metric is fairly analogous to that of the Schwarzschild metric. 

1. I N T R O D U C T I O N  

It is well known  that  the simplest  cosmological  model  is the Eins te in  

universe,  which is static and  nonempty ,  having a cons tant  radius  and  a 

cons tan t  curvature.  It is of  type IX in the classification of Bianchi  (Weinberg,  
1972). The three F r i e d m a n n - R o b e r t s o n - W a l k e r  cosmological  models  

describe an isotropic homogeneous  universe.  One  of these is a closed (finite) 
expand ing  (and  contract ing)  universe of Bianchi  type IX, and  is a generaliz-  
a t ion of  the Eins te in  universe  (Landau  and  Lifshitz, 1975). 

Ano the r  model  of  Bianchi  type IX is the famil iar  Taub  metric, which 
is spatial ly homogeneous ,  bu t  not  isotropic (Taub,  1951). It satisfies the 
vacuum Eins te in  field equa t ions  and  has no s ingular i ty;  thus, its physical  

appl icabi l i ty  is very l imited. One can find an interest ing analogy be tween  
the gravi ta t ional  spacet ime described by the N U T  metric ( N e w m a n  et al., 

1963) and  the cosmological  model  of Taub.  The T a u b - N U T  metric has two 

posit ive constants  (rn, I), and  the N U T  metric reduces to the Schwarzschild 
metric  for l = 0, All the above models  have R x S 3 topology. 
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Recently, much interest has focused on models which are nonisotropic 
(MacCallum, 1979, 1984), especially in connection with the early universe, 
as well as with Misner's (1969, 1970) mixmaster  universes. In this paper  
we propose such a model. Our metric has R x S 3 topology (Bianchi type 
IX) (Ozsv~th and Schiicking, 1969; Ryan and Shepley, 1975) and, like the 
Taub metric, has two positive constants (r, T), though it is much simpler 
than the latter. It is a solution of Einstein's field equations with an energy- 
momentum tensor describing matter (the same source of the Einstein uni- 
verse), along with a stress tensor. In a way, one can think of  our metric as 
the cosmological analogy to the Schwarzschild solution, especially concern- 
ing the singularity problems at t = 0 and t = 2~" in our metric, as compared 
to r = 0 and r = 2m for the Schwarzschild case (Carmeli, 1982). 

In Section 2 we present our metric and discuss its properties. Use will 
be made of standard tetrad methods of differential forms. In Section 3 we 
discuss the gravitational red shift problem related to our metric. The maximal 
extension of the metric is then given in Section 4, whereas Section 5 is 
devoted to the summary  and concluding remarks. 

2. T H E  METRIC  

In this section our cosmological metric will be introduced in the 
coordinate system x ~ (Greek letters take the values 0, 1, 2, 3): x ~  t, x 1 = 

0 ,  X 2 "m- (~, X 3 ~--- I~. Here, 0, ~b, 0 are Euler angles, where 0 -  0_< zr, 0 -  < ~b -27r ,  
and 0 - 0 - <  4~r. We will also use the tetrad of differential forms co ~, where 
w ~ = d t  and the other components  to a (Latin indices take the values 1, 2, 3) 
are expressed in terms of the Euler angles by the well-known relations 
familiar from classical mechanics for the rigid-body rotations, when use is 
made of the body axes (Goldstein, 1965) 

1 w = s i n 0 s i n 0 & b + c o s O d 0  

w =s in  0 cos 0 d ~ b - s i n  O d O  (2.1) 
3 oJ = cos 0 d4~ + d0 

Our discussion will start with the extension of the Einstein static 
universe, which is of  Bianchi type IX. The Einstein field equations which 
yield this model are 

G ~ = p o u ~ u  ~ (2.2) 

Here and throughout this paper  we will use units in which c = G = K = 1. 
In equation (2.2) Po is the matter  density, a positive constant, u ~ is the 
four-velocity, u " =  d x ~ / d s ,  and one has u ~ = 0  for /x  S0 .  Here G "~ is the 
Einstein tensor. Our extension introduces the field equations in the form 

G ~ = p o U ~ U  ~ + P ~  (2.3) 
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where  P"~ is a stress tensor ,  and  u"  satisfies the same  condi t ions  out l ined 
above.  

Our  goal is to obta in  a h o m o g e n e o u s  non iso t rop ic  cosmologica l  model ,  
and  for  s implici ty  we will a ssume that  the an i so t ropy  occurs in only  one 
direction.  We will choose  this distinct direct ion to be a long o93 , while the 
o ther  two direct ions,  a long w I and  o92, are sup posed  to be  isotropic  in our  
te t rad system. Due  to the above  requi rements  o f  symmetr ies ,  the metr ic  we 
are seeking will be a s sumed  to have the fol lowing s imple  form:  

ds 2 = V -1 at  z -  t2[(o91)2+ (o92) 2] - T2 V(o93) 2 (2.4) 

Here  T is a posi t ive cons tan t  which has the d imens ions  o f  t ime,  V is a 
funct ion  of  t ime only, V = V ( t ) ,  and the s ignature  is (+  - - - ) .  Substi tut ing 
(2.1) in the metr ic  (2.4), the lat ter  will have  the fo rm 

ds 2= V - '  dt  2 -  t2(dO2+sin 2 0d492) - T 2 V ( d q ~ + c o s  Od49) 2 (2.5) 

in the coord ina te  system x ~ = (t, 0, ~b, ~O). It  should  be noted  that  the metr ic  
(2.5) is not  a par t icular  case of  the Taub  metr ic  given by  

ds 2= U -1 d t 2 - ( t 2 + 1 2 ) ( d O 2 + s i n  2 0 d f b Z ) - 4 1 2 U ( d O + c o s  Odcb) 2 (2.6) 

F rom the metr ic  (2.5) one can calculate the Christoffel  symbols ,  the 
Ricci tensor,  the Ricci scalar,  and  the Einstein tensor.  In the coord ina te  
sys tem x ~' = (t, 0, ~b, 0) ,  the cont ravar ian t  Einstein tensor  is then given by  
(all o ther  quanti t ies  are given in Append ix  A) 

G 0~ Vt - l ( y + V 2 t  -2 l - - ~  + Vt -2 

G ~ = G ~ G ~ = 0  

T 2 V  GI  l = _ v___~_ t ~ 3 V ~ 

2t  ~ 

G 12 = G 13 = 0 

G 22= G 1~ sin -2 0 

(2.7) 

G 2 3 = - G  22cOs 0 

3 
G 33= G 11 cot e 0 -  T - 2 V - 1 t - I V  - T 2 v - l t - 2 ( l +  V)-I- 4t 4 

Here  a dot  denotes  different iat ion with respect  to the t ime coord ina te  t. 
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In the tetrad system, the contravariant Einstein tensor can be easily 
calculated using standard tensor transformation rules. The resultant tensor 
is diagonal and is given by / oo00 0 ) 

i G 11 0 0 
G ~  = 0 G n 0 

0 0 6 33 -- 6 11 c o t  2 0 

(2.8) 

(All other quantities are given in Appendix B.) Here G ~176 G 11, and G 33 a r e  

given explicitly in equations (2.7). The Einstein field equations in the tetrad 
system will have the matrix form 

o o ) 
i Gll  0 0 = 0 0 0 + 

0 G I1 0 0 0 

0 0 G 33- G H cot 2 0 0 0 
(2.9) 

It can easily be seen from equation (2.9) that P ~  must have a diagonal 
form, namely P ~  = 0 for/z # v. The explicit Einstein field equations, accord- 
ing to equation (2.9), are given by 

G~ ~ Vt-Iv+ V2t -2 1--4-~ + Vt-2+P+P~ (2.10a) 

G~= (z t_3v_T2V P, (2.lOb) 
- 2t-- 5 -  4t6 = 

9 T2V 
6 2 2  . . . .  t-3 f" . . . . .  P2 (2.10c) 

2 t  2 4 t  6 

3 
G ~ =  - T - 2 V - l t - I v -  T-2V-'t-z( 1+ V)+4-~= P3 (2.10d) 

where p = po(u~ 2 and Po = pOO, P1 = ply, P2 = p22 P3 = p33. From equations 
(2.lOb) and (2.10c) one notices that P~ = Pz, expressing the isotropy along 
these two spatial directions. 

Let us now define a new function 

W=(V+l ) t ,  

Thus, we obtain 

V= - 1 +  Wit  (2.11) 

Vr tV+ V+ 1 (2.12a) 

(2.12b) 
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Substituting (2.11) and (2.12) in (2.10), we obtain 

2 W GO0= t_ ( t _ l )  T2/W ,2 l ' ; V - - ~ t - 1  ) =P+Po (2.13a) 

G~I ~2 -3.. r 2/w_ ) 
= = - 2 t  W - ~ - ~ g ~ t -  1 = P , =  P2 (2.138) 

vr 3 
G ~  = - T2t2 ( W/t - 1) +4-~ = P3 (2.13c) 

A particular solution to the above equations is given by 

W = const (2.14) 

Thus, we obtain the following relations: 

T 2 V 2 
p + P o  = 4t 4 (2.15a) 

T2V 
P1 = P2 = - 4 t  6 (2.15b) 

3 
P3 =~-g (2.15c) 

with 

V =  -1  +2~-/t  (2.16) 

where ~" = W/2 is a constant having the dimension of time and is assumed 
to be of  the order of  101~ years. 

At t - - 0  the universe has the shape of  infinitely long, infinitesimally 
thin, string. For values of  t <2~', V is positive; thus, the stress tensor has 
two identical negative components/~ and P2 and one positive component  
P3. The negative ones describe expansions along the two directions to I and 
to 2, while the positive component  expresses a contraction along the to 3 
direction. Such a stress tensor will then yield an anisotropic universe expand- 
ing along two directions and contracting along the third one, thus having 
the shape of  a symmetrical ellipsoid. When t becomes larger than 2~', t > 2~r, V 
and goo become negative, while g33 becomes positive. Therefore, spacelike 
and timelike are exchanged, just as in the Schwarzschild metric at r = 2m. 
A more detailed discussion on this singularity is given in Section 4. 

The two components  of  the stress tensor P1 and P2 change signs at 
t > 2z, while the component  P3 remains positive, which means contraction 
along all spatial directions. The contraction along the to 3 direction continues, 
but at t = 2~ the expansion occurring at t < 2r  of  the universe along the to 1 
and to 2 directions ceases and contraction along these directions starts. 

In the next section, the red shift analysis will be carried out. 
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3 .  T H E  R E D  S H I F T  

When discussing the red shift problem, it is more convenient and 
meaningful to use the tetrad system (2.1) rather than the coordinates 
x"  = (t, 0, qS, ~). Our first calculation of the red shift will be along the w 1 
direction, which is identical to that along the o) 2 direction. The calculation 
is standard, and is as follows (Carmeli, 1982). 

Consider two clocks moving along the w I direction at two points 
denoted by 1 and 2. The line elements at these two points, using equation 
(2.4) and the fact that dt  = 0, are given by 

ds2(1)  = - t21(o~ ~)2 (3.1 a) 

as2(2) = - t~(o)~) 2 (3.1b) 

The ratio of  the rates of  similar clocks located at these points is given by 

ds(2) t2 
= - ( 3 . 2 )  

as( l )  tl 

The frequency Vo of an atom located at point 1 at a cosmological t ime q ,  
when measured by an observer located at point 2 at a cosmological t ime t2 
(tl < t z < 2 r ) ,  is therefore given by 

/Jo t2 
- -  = ( 3 . 3 )  
P t 1 

Let us denote t 2 -  tl --- At; then from equation (3.3) one has 

( v ~  t2 - l -  

r' t 2 -- A t \ t 2 ] 

and, thus, to a first approximation,  

Vo A t  
- -~-  1 + - - >  1 (3.4) 
12 t 2 

which means a red shift. Hence, our universe expands in the 021 (and in 
the w 2) direction, in accordance with the results of  the previous section. 

The red shift parameter  is given by z = V o / v -  1. Using equation (3.4), 
we obtain 

z = A t~ t2 (3.5) 

Denoting t2= t, and defining c A t =  R ,  where R represents the distance 
between the observer and the source, we obtain 

1 R  
z - (3.6) 

c t 
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Equation (3.6) is the well-known Hubble law z = HR/c; thus, the Hubble 
constant, according to the above analysis, is 

H = 1/t (3.7) 

where t is the present age of the universe. 
When use is made of the other form of  the Hubble  law, v = HR, where 

v is the speed of recession of the galaxies, one can easily see that when t 
is small, the speed of  recession is large, in agreement with the well-known 
early inflationary model (Guth, 1981; Linde, 1982). As t becomes larger, v 
becomes smaller. 

The red shift calculation along the w 3 direction is obtained in the same 
way as is done along the ~o i and w 2 directions, though it is a bit complicated. 
The line element has the form ds 2= - T 2 V ( ~ o 3 ) 2 ;  hence at the two points 1 
and 2 we have 

ds2(1) = - T 2  V ( 1 ) ( 0 9 3 )  2 (3.8a) 

ds2 (2 )  = - T 2 V ( 2 ) ( w 3 )  2 ( 3 . 8 b )  

The ratio of  the frequencies, using the value of V given by (2.16), is 

- - =  -1 =( t l ]  (2r - t2]  (3.9) 
v t 2 /  t l /  \t2] \ 2 r - t 1 /  

For values of  tl < t2< 2r, both terms on the right-hand side of  equation 
(3.9) are smaller than 1; thus, Vo< v, which means that, instead of a red 
shift, one finds a blue shift. 

This result is consistent with the contraction along the w 3 direction 
shown in the previous section; the galaxies move toward each other. Writing 
equation (3.9) in the form 

v o= fi 1 -  1 -  (3.10) 
/,t 

then for values tl < t2<< 2r  one can use Taylor 's  expansion, getting 

to a first approximation.  Let us denote t 2 -  fi = At; thus, 

= - - ~ 1 - - -  (At<< t2) 
k t2 / 2 t2 

and equation (3.11) will have the form 

( V_~ov 1 2 t / \  4 r / = l - A t \ - ~  ~ 1 < 1  (3.12) 
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to a first approximation,  and where t = t2. Using the above equation, the 
red shift parameter  is given by 

z = - 2  \Zr t /At  (3.13) 

Again defining c At = R, we obtain 

1 (1+1  
z = - ~ c \ 2 r  t /R  (3.14) 

which is the Hubble law. The Hubble constant, according to the above 
calculation, is 

H 2 \2"r t~ (3.15) 

In the next section a maximal extension of the coordinate system 
x ~' = (t, 0, th, ~b) is introduced and discussed. 

4. MAXIMAL EXTENSION OF THE METRIC 

In the previous sections one can notice the interesting properties of  
the singularity at t = 2r. We now investigate this singularity. The analysis 
is similar to that for the Schwarzschild metric (see, for instance, Carmeli,  
1977, 1982). 

We start our discussion by finding the null directions, in the coordinate 
system x ~' = (t, 0, 4~, ~), along which dO = d~b = 0, given by 

ds 2= V -1 dt 2- T2V dt~2=O (4.1) 

Hence the null directions satisfy the equation 

dt 
- -  = + T V  ( 4 . 2 )  
d~ 

Substituting the value of V given by equation (2.16), we obtain 

dt T 
- -  = 4- •  - t )  ( 4 . 3 )  
d4, t 

In the region t < 2~', the opening of the light cone has an angle ~r at t = 0, 
and decreases to zero as t increases to 27. On the other hand, in the region 
t > 2% the parametric lines of  the coordinate t become spacelike and those 
of  the coordinate ~b become timelike. Consequently, the light cones rotate 
90 ~ (see Figure 1), and their openings decrease from 7r (at t ~ 2 r + )  to •  
(at t ~ oe). 
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Fig. 1. Orientations and openings of the light cones. 

Compar ing  now the two different figures of  the light cones on both 
sides of  t = 2% we see that the regions on the two sides of  the universal 
surface t = 2r  do not join smoothly there. 

At the cosmological time t = 2~- the components  of  the metric (2.5) goo 
diverge and g33, g23 vanish, thus giving the impression of the existence of 
a singularity. The determinant of  the metric (2.5), g = - T2t 4 sin 2 0, however, 
is regular at t = 2% while the Ricci scalar, given in Appendix A [equation 
(A.10)] vanishes. 

It follows that the singularity at t = 2r  is not an intrinsic feature of  the 
metric (2.5) and is different from that at t = 0, but rather is a property of  
the coordinate system used in expressing the metric. 

We now introduce a new coordinate system, x '~ = (u, 0, ~b, v), in which 
light rays everywhere have the slope dx'3/dx'~ +1. The transformation of 
coordinates is as follows: 

1 t ~/2 / ~b \ ] tt=(--2"-~7) et/4~'c~ Z~-~) 
/ ) = (  --~7) 1/2e t/4r 

= t 1 1/2 cosh(  T ~ 

The inverse transformation is given by 

U2--V2= ( 1 - - ~ ) e  t/2T 

(t < 2 ~-) (4.4) 

(t > 2z) (4.5) 

(4.6) 
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both for t < 2r  and t > 2% and 

qJ = (4r/T) tgh-l(v/u) (t < 2~') (4.7a) 

q~ = (4~'/T) tgh - l (u /v )  (t > 2r) (4.7b) 

It will be noticed that u is the timelike coordinate, while v is the 
spacelike one; both u and v are dimensionless. 

The metric tensor g~,~ in the new coordinate system has the form 

[f2 0 0 i ) 
0 - t  2 0 (4.8) 

g ~ =  0 0 - ( t  2sin 2 0 + T 2 V c o s  20) g23 

0 0 g~2 _f2] 
where the function f depends on t alone and is defined by 

f2  = 32r3 e-t/>" 
t 

= a transcendental function of u 2 -  v 2 (4.9) 

and the components g~3 = g~z have the form 

gr23-4x/2T'r3/2e-t/4"c~ -(2"r-t)l/2[cOsh(T~-~z)]-lt  t_2r)1/2 [ sinh ( ~ ) ] - I T  ( t >  2r)(t<3r) 

(4.10) 

The metric (4.8) does not have a singularity at t = 2r; the only singularity 
in this metric is at t = 0. 

The new coordinates give an analytic extension S' of  the limited region 
of spacetime S which is described without singularity by the coordinate 
system x" = (t, 0, q5, ~b) with t < 2r. The metric in the extended region joins 
on smoothly, and without singularity, to the metric at the boundary of the 
region S at t = 2~" (see Figure 2). The extended region S', moreover, is the 
maximal possible singularity-free extension of the region S. The properties 
indicated in Figure 2 are a direct consequence of equations (4.6) and (4.7). 
The region I in Figure 2 corresponds to 0--- t < 2r. An object moving from 
the hyperbola t = 0 will cross the straight lines qJ = const in the direction of 
increasing qJ, which means expansion. On the other hand, in region II 
( t > 2 r ) ,  the same object will cross the straight lines (~0=const) in the 
direction of decreasing ~0, which means contraction. 
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t=27,u=-v\,~ ~-0 U ~--const //t=2"l',u=v 

~=0 

Fig. 2. Maximal extension of the metric in the u, v plane. 

5. SUMMARY AND C O N C L U D I N G  REMARKS 

In this paper  we introduced and discussed a new homogeneous and 
nonisotropic cosmological metric describing a closed and nonstatic universe. 
The most interesting property of  this universe is its development in time. 

At the very beginning, our universe has the shape of an infinitesimal 
thin string with an infinite length, and in time it evolves into the shape of 
a symmetrical ellipsoid. This result is due to an expansion in two spatial 
directions, and a contraction in the third one. 

At the cosmological time t -- 2~', there exists a "singularity," which was 
discussed in detail in Section 4. At this time the expansion along the two  
spatial directions ceases and contraction begins, while along the other 
direction the contraction continues; thus, the whole universe contracts 
toward a singularity. 

As is well known, at the present time the universe is isotropic and 
homogeneous (Carmeli et  al., 1981, 1983, 1984). Red shift measurements,  
interpreted as a Doppler  effect, indicate an expanding universe. Accordingly, 
our metric cannot describe our universe at the present time. It suggests, 
however, a new model for the early inflationary universe. 

A P P E N D I X  A 

In this appendix,  for the convenience of the reader, we give the 
expressions for the Christoffel symbols, the Ricci tensor, the Ricci scalar, 



532 Carmeli and Manor 

and the Einstein tensor  in the coordinates  x"  = (t, 0, q~, ~),  where 0, ~b, 
are the Euler angles, 0 - 0 -< ~r, 0 --- q~ -< 2~', 0 -< 0 - 47r. 

The metric is given by 

o Oo) V ~ - t  a 0 0 (A.1) 

g ~ =  0 - ( t  2 sin20 + T Z v  cos 2 0) - T 2 V c o s  

0 -- T Z v  COS 0 - T 2 V  

0 0 ) 
- t  -2 0 0 

g"~ = 0 - t  -2 sin 2 0 t -2 cos 0 sin -2 0 (A.2) 

0 t -2 cos 0 sin -2 0 - ( T  -2 V -~ + t -2 cot 2 0) 

g = det g ~  = - T 2 t 4  sin 2 0, ~z--~ = Tt2 sin 0 (A.3) 

where V is a funct ion o f  t only and T is a constant  having a d imension  of  
time, presumably  of  the order  o f  10 l~ years. Notice the existence o f  the 
fol lowing simple relationships among  the metric components ,  which show 
that  everything, except for  gOO (=gooV2), can be expressed in terms of  gll 

and g33 : 

g22 = g l l  sin 2 0 + g33 COS2 0, g23 = g33 COS 0 (A.4) 

gll = gilt-a, g22 = gllt-4 sin-2 0, g23 = _gi l t -4  COS 0 sin -2 0 
(A.5) 

g33 .= g l  1 t - 4  cot 2 0 + g33 T - 4  v-2 

The nonvanish ing  Christoffel symbols are given by 

Fo~ = -�89 V~ = Vt, F~ V(t sin 2 0+�89 cos 2 0) 

Fo 1 ,-it,, 2 IZI)- 0 t -1  2 3 = ~  , , COS 0, F 3 3 = � 8 9  1 F01 

F~2 = \ t2 1 sin 0 COS 0, F 1 3 -  r2Vsin2t 2 0, F 2 2 =  t -1 (A.6) 

[ T2V'~ T2V 
F~2 = ~l--~-~-t2 } cot  0, F~3-  2t2 s in- t  0 

1-3 __ I IZ-I  ~r r g 2  = ( � 8 9  1 2 -  t -1 )  c o s  0, "03 -- 2 - -  

( ) r ~ =  \ - ~ - - 1  cos 0 cot 0-�89 0, r ~ -  r~v  2t 2 cot  0 

In  the above and fol lowing formulas a dot denotes  differentiation with 
respect to the time coordina te  t. 
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We use the following expression for the Ricci tensor (Carmeli, 1982): 

1 0 ( x / ~ - g  rL) 
R ~  = x / ~  Ox ~ 

We then have 

Roo = - V - I ( 1 v  -~- t - '  V) ,  

�9 T 2 
R n =  tV+ ( 1 - ~ )  V+ I, 

R22 = Rn sin 2 0+R3a cos 2 0, 

02 In 
F ~  F ~ (A.7) 

OX~OX v 

R o ,  = Ro2 = Ro3 -- 0 

RI2 = R13 = 0 

R23 = R33 c o s  0 
(A.8) 

R33 = �89 r 2 V( f" + 2t- '  (~ ~: r 2 t - 4V)  

The contravariant components are given by 

R ~ 1 7 6  R o o V  2, R ~ = R ~  R ~ = 0  

RH= RHt -4, R ' 2 = R 1 3 = 0  
(A.9) 

R 22 --= R , , t  -4  sin -2 0, R 23 = - R  22 c o s  0 --= - R , , t  -4  c o s  0 sin -2 0 

R 33 = R,, t - 4  c o t  2 0 + R33 T -4  V -2 

The Ricci scalar is given by 

R = - {  "" , .  2 v + g t - V + ~  [ ( 1 - ~ t ~ ) V + I ] }  (A.10) 

The covariant components of  the Einstein tensor are given by 

( T 2 )  
Goo=t - l v - ' ( z+ t  -2 1-~-~  + t - 2 V  - ' ,  Gm=Go2=G03=O 

T2V 
G1, = -it2 f / -  t r  4t----Z, G,2 = G13 = 0 

(A.11) 
G22 = GH sin2 0 + G33 cos2 0, a23 = G33 cos  O 

3 T 4 V  2 
G33 = t - 'T2VV - t - 2 T 2 V ( I +  V)-+ 4 t 4 

The contravariant components of the Einstein tensor are given by 

G ~ 1 7 6  G o o V  2, G 0 ' =  G 02=  G 03 = 0 

G "  = GHt -4, G ' 2 =  G '3 = 0 
(A.12) 

G 22 = G , ,  t - 4  sin --2 0, G 23 = - G,, t-4 COS 0 sin-2 0 

G 33 = G,1  t - 4  c o t  2 0 + G33T-4V -2 
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It will be noted that the dependence among the various components 
of the Ricci and Einstein tensors is identical to that among the components 
of the metric tensor as given by equations (A.4) and (A.5). 

APPENDIX B 

This appendix is devoted to results expressed in the tetrad (2.1): 

to I = sin 0 sin O d~ + cos O dO 

o) 2= sin 0 cos 0dq5 - s i n  OdO (B.1) 

w 3 = cos 0 d6 + dO 

Expressions for the field quantities in this tetrad system are obtained, as 
usual, by coordinate transformations. Denoting dx '~ = (dt, co 1, w 2, to 3) and 
x ~ = (t, 0, qS, 0), we obtain 

Ox ''~ cosO s inOsinO 
Ox t3 -s in  0 sin 0 cos O 

0 cos 0 

(B.2) 

The metric, which is diagonal, has the form 

I v ,  o o o \ /~oo O o o \  
T~ [ 0 --t2 0 0 | l !  g "  0 ~ )  (B.3) 

g~" = /  0 0 - t  2 0 / = 0 gll 

\ 0 0 0 - T 2 V ]  0 0 g33 

/ V  O 0 O ~ /g ~176 0 0 

I 0 - - t  -2 0 0 I = I 0 g~l 0 o ) g)~= (B.4) /o o -t-~ o / / o  ~ gll o 
\0  0 0 - T - 2 V  - ']  \ 0 0 0 T-4V-2g33 

g = det T - -  g ~ - - r 2 t  4, Vr-~ = Tt 2 (B.5) 

where goo, g~l, gOO, and g ll are the components of the metric in the coordin- 
ate system x ~ = (t, 0, oh, 0), given explicitly in Appendix A. 

The Ricci tensor is given, for instance, by 

c)X t,'x OX tv 
R~ ~ - - - - R  ~ (B.6) 

c3X ~ OX ~ 
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We obtain 

i ~ 0 0 0 R 11 0 0 
R ~ =  0 R 11 0 

0 0 R33 T -4 V -2 

~ ~ i) 0 Rll 

0 0 R33 

Rr = R 

expressions where the 
explicitly in Appendix A. 

For the Einstein tensor we obtain 

G ~ 0 0 0 

i G 11 0 0 
G~-~ = 0 G 11 0 

0 0 G33 T -4 V -2 

Goo 0 0 i ) 

~ o o 0 G .  

0 0 G33 

on the right-hand side of (B.7)-(B.9) 

(B.7) 

(B.8) 

(B.9) 

are given 

(B.10) 

(B.11) 

where the expressions on the right-hand side of the above equations are 
given explicitly in Appendix A. 

Notice that the same dependence exists between the components r g/zv, 
R ~  and G ~ .  
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