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Nonvacuum Taub-Type Cosmological Model
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The Einstein universe is a simple model describing a static cosmological space-
time, having a constant radius and a constant curvature, and, as is well known,
it does not describe our universe. We propose a model which is an extension
of Einstein’s. Our metric, having R x $> topology, describes a nonisotropic
homogeneous closed (finite) universe of Bianchi type IX. This metric is similar
to that of Taub, but is simpler. Unlike the Taub solution (which is a cosmological
extension of the NUT solution), however, the universe described by our metric
contains matter. Like the Taub metric, our metric has two positive constants
(7, T). The gravitational red shift calculated from our metric is given. Similarly
to the Schwarzschild metric, which has a “singularity’ at r = 2m, this metric has
the same kind of “singularity” at ¢t = 27. The maximal extension of the coordinates
in our metric is fairly analogous to that of the Schwarzschild metric.

1. INTRODUCTION

It is well known that the simplest cosmological model is the Einstein
universe, which is static and nonempty, having a constant radius and a
constant curvature. It is of type IX in the classification of Bianchi (Weinberg,
1972). The three Friedmann-Robertson-Walker cosmological models
describe an isotropic homogeneous universe. One of these is a closed (finite)
expanding (and contracting) universe of Bianchi type IX, and is a generaliz-
ation of the Einstein universe (Landau and Lifshitz, 1975).

Another model of Bianchi type IX is the familiar Taub metric, which
is spatially homogeneous, but not isotropic (Taub, 1951). It satisfies the
vacuum Einstein field equations and has no singularity; thus, its physical
applicability is very limited. One can find an interesting analogy between
the gravitational spacetime described by the NUT metric (Newman et al.,
1963) and the cosmological model of Taub. The Taub-NUT metric has two
positive constants (m, ), and the NUT metric reduces to the Schwarzschild
metric for [ =0, All the above models have R x S topology.
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Recently, much interest has focused on models which are nonisotropic
(MacCallum, 1979, 1984), especially in connection with the early universe,
as well as with Misner’s (1969, 1970) mixmaster universes. In this paper
we propose such a model. Our metric has R x S’ topology (Bianchi type
IX) (Ozsvath and Schiicking, 1969; Ryan and Shepley, 1975) and, like the
Taub metric, has two positive constants (7, T), though it is much simpler
than the latter. It is a solution of Einstein’s field equations with an energy-
momentum tensor describing matter (the same source of the Einstein uni-
verse), along with a stress tensor. In a way, one can think of our metric as
the cosmological analogy to the Schwarzschild solution, especially concern-
ing the singularity problems at ¢ =0 and ¢ =2+ in our metric, as compared
to r=0 and »=2m for the Schwarzschild case (Carmeli, 1982).

In Section 2 we present our metric and discuss its properties. Use will
be made of standard tetrad methods of differential forms. In Section 3 we
discuss the gravitational red shift problem related to our metric. The maximal
extension of the metric is then given in Section 4, whereas Section S is
devoted to the summary and concluding remarks.

2. THE METRIC

In this section our cosmological metric will be introduced in the
coordinate system x* (Greek letters take the values 0,1,2,3): x°=1¢ x'=
6, x>= ¢, x> = . Here, 6, ¢, ¢ are Euler angles, where 0< 0=, 0< ¢ <2,
and 0= ¢ =47 We will also use the tetrad of differential forms w®, where
= dt and the other components w“ (Latin indices take the values 1, 2, 3)
are expressed in terms of the Euler angles by the well-known relations
familiar from classical mechanics for the rigid-body rotations, when use is
made of the body axes (Goldstein, 1965)

o' =sin 0 sin ¢ d¢ +cos ¢ dO
w’=sin 0 cos ¥ d¢ —sin ¢ d6 (2.1)
w’=cos 6 dp+dy

Our discussion will start with the extension of the Einstein static
universe, which is of Bianchi type IX. The Einstein field equations which
yield this model are

G"" = pou*u” (2.2)

Here and throughout this paper we will use units in which c=G=« = 1.
In equation (2.2) p, is the matter density, a positive constant, u* is the
four-velocity, u* = dx*/ds, and one has u* =0 for u # 0. Here G*” is the
Einstein tensor. Our extension introduces the field equations in the form

W poutu’ + P* (2.3)
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where P*” is a stress tensor, and u* satisfies the same conditions outlined
above.

Our goal is to obtain a homogeneous nonisotropic cosmological model,
and for simplicity we will assume that the anisotropy occurs in only one
direction. We will choose this distinct direction to be along w’, while the
other two directions, along w' and w?, are supposed to be isotropic in our
tetrad system. Due to the above requirements of symmetries, the metric we
are seeking will be assumed to have the following simple form:

ds’= V7' d* - (' + (0?)?] - T*V(w?)? (2.4)

Here T is a positive constant which has the dimensions of time, V is a
function of time only, V= V(¢), and the signature is (+ — — —). Substituting
(2.1) in the metric (2.4), the latter will have the form

ds’= V7 di* — t*(d0* +sin® 0 d¢p?) — T*V(dy +cos 0dp)>  (2.5)

in the coordinate system x* = (¢, 6, ¢, ). It should be noted that the metric
(2.5) is not a particular case of the Taub metric given by

ds®=U"'di*— (1*+ 1>)(d6*+sin® 0 dp>) — 4P U(dy +cos 6 dp)*  (2.6)

From the metric (2.5) one can calculate the Christoffel symbols, the
Ricci tensor, the Ricci scalar, and the Einstein tensor, In the coordinate
system x* = (t, 6, ¢, ¢), the contravariant Einstein tensor is then given by
(all other quantities are given in Appendix A)

2

. T
GP=wvi'V+ Vzt‘2<1 —P> + V2

GOI — GOZ= G03 =Q

14 TV
11______ *3V_
G 24 4%
G?=G"=0 (2.7)

G*?=—-G*cos #
GP=G"cot? 0-T?V ' 'V-T 2V ' 21+ V)+%

Here a dot denotes differentiation with respect to the time coordinate t.
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In the tetrad system, the contravariant Einstein tensor can be easily
calculated using standard tensor transformation rules. The resultant tensor
is diagonal and is given by

G® 0 0 0
0 G%' o 0
G=l0o o o 0 (2.8)

0 0 0 G*”-G"cot’8

(All other quantities are given in Appendix B.) Here G%°, G'!, and G*’ are
given explicitly in equations (2.7). The Einstein field equations in the tetrad
system will have the matrix form

G 0 0 0 po(u®? 0 0 0
0 G" o0 0 0 0 00
11 = + | P
0 0 G 0 0 0 0 0
0 0 0 G*-G'"cot’8 0 0 00
(2.9)

It can easily be seen from equation (2.9) that P*” must have a diagonal
form, namely P*” =0 for u # v. The explicit Einstein field equations, accord-
ing to equation (2.9), are given by

) T?
GY=Vi'v+ Vzt_2<l —P> + Vi +p+P, (2.10a)
Vv o . TV
Glrl - 212—1 3y — v =P, (210b)
vV .. T
G%r2= _2t2_t 3y — 4t6 =P, (2100)

. 3
G33 — T*Zv*lt—l V- T—Z V*lt—Z(l + V)+-47= P3 (2_10d)

where p = po(u°)? and P,= P%, P, = P'', P,= P>, P, = P**. From equations
(2.10b) and (2.10c) one notices that P, = P,, expressing the isotropy along
these two spatial directions. ,

Let us now define a new function

W=(V+1)1, V=—1+W/t (2.11)
Thus, we obtain
W=tV+V+1 (2.12a)

W=tV+2V (2.12b)
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Substituting (2.11) and (2.12) in (2.10), we obtain

w . THw O\
GOTO=I_2<T—1> W‘*m(T—-l) =p+P, (2.13a)
. T2(W
Gl =G%= —2:"3W—ﬁ<7— 1) =P, =P, (2.13b)
124 3
G¥= P, (2.13c)

B e S S — SEE
T*P(W/t-1) 4t

A particular solution to the above equations is given by

W = const (2.14)

Thus, we obtain the following relations:

T’V?
p+Py==—m (2.15a)
2
P =P=— itﬁv (2.15b)
p,= 3—; (2.15¢)
4t
with

V=—14+27/t (2.16)

where 7= W/2 is a constant having the dimension of time and is assumed
to be of the order of 10'° years.

At t=0 the universe has the shape of infinitely long, infinitesimally
thin, string. For values of t <27, V is positive; thus, the stress tensor has
two identical negative components P; and P, and one positive component
P;. The negative ones describe expansions along the two directions »' and
o’, while the positive component expresses a contraction along the o’
direction. Such a stress tensor will then yield an anisotropic universe expand-
ing along two directions and contracting along the third one, thus having
the shape of a symmetrical ellipsoid. When ¢ becomes largerthan 27, t > 27, V
and g, become negative, while g;; becomes positive. Therefore, spacelike
and timelike are exchanged, just as in the Schwarzschild metric at r=2m.
A more detailed discussion on this singularity is given in Section 4.

The two components of the stress tensor P, and P, change signs at
t > 27, while the component P, remains positive, which means contraction
along all spatial directions. The contraction along the w’ direction continues,
but at ¢ =27 the expansion occurring at ¢ <27 of the universe along the '
and w” directions ceases and contraction along these directions starts.

In the next section, the red shift analysis will be carried out.
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3. THE RED SHIFT

When discussing the red shift problem, it is more convenient and
meaningful to use the tetrad system (2.1) rather than the coordinates
x* =(t, 6, ¢, ). Our first calculation of the red shift will be along the '
direction, which is identical to that along the w” direction. The calculation
is standard, and is as follows (Carmeli, 1982).

Consider two clocks moving along the w' direction at two points
denoted by 1 and 2. The line elements at these two points, using equation
(2.4) and the fact that dt =0, are given by

ds*’(1) = —3(e")? (3.12)

ds’(2) = —t3(e')? (3.1b)

The ratio of the rates of similar clocks located at these points is given by
ds(2) t,

— == 2

ds(1) (3-2)

The frequency v, of an atom located at point 1 at a cosmological time ¢,
when measured by an observer located at point 2 at a cosmological time ¢,
(t, <t,<27), is therefore given by

t
fo_2 (3.3)

14 tl

Let us denote t,—t, = At; then from equation (3.3) one has

ﬂ__t_z__(l_ﬁ_t)”
14 tz_At tz

and, thus, to a first approximation,

Yo Al (3.4)
v ty
which means a red shift. Hence, our universe expands in the o' (and in
the w?) direction, in accordance with the results of the previous section.
The red shift parameter is given by z = v,/ v — 1. Using equation (3.4),
we obtain

z= At/ 1 (3.5)
Denoting #,=1, and defining cAt= R, where R represents the distance
between the observer and the source, we obtain

R
" (3.6)

z =

o
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Equation (3.6) is the well-known Hubble law z = HR/¢; thus, the Hubble
constant, according to the above analysis, is

H=1/t (3.7)
where f is the present age of the universe.

When use is made of the other form of the Hubble law, v = HR, where
v is the speed of recession of the galaxies, one can easily see that when ¢
is small, the speed of recession is large, in agreement with the well-known
early inflationary model (Guth, 1981; Linde, 1982). As ¢ becomes larger, v
becomes smaller.

The red shift calculation along the ” direction is obtained in the same
way as is done along the ' and w” directions, though it is a bit complicated.
The line element has the form ds?=—T?V(w?)?; hence at the two points 1
and 2 we have

ds*()=-T*V(1)(w?)? (3.8a)
ds’(2)=-T*V(2)(»>)* (3.8b)
The ratio of the frequencies, using the value of V given by (2.16), is

1/2 —1/2 £\ V2 —t\ V2
E=(—1+2—T) (—1+3T> =(—‘> <27 2) (3.9)
14 t2 tl t2 27"‘[1

For values of ¢, <t,<27, both terms on the right-hand side of equation
(3.9) are smaller than 1; thus, v,< v, which means that, instead of a red
shift, one finds a blue shift.

This result is consistent with the contraction along the ’ direction
shown in the previous section; the galaxies move toward each other. Writing
equation (3.9) in the form

Yo tl 1/2( t2>-1/2( t1)~1/2
—=(—= 1-— 1-— 3.10
v <t2) 27 27 ( )
then for values #, < t,< 27 one can use Taylor’s expansion, getting
6n\'"? t t
() -2
v t 47 47
[1 1/2[ 1 ]
={— 1+—(t,—t¢ 3.11
(&) - G.11)
to a first approximation. Let us denote #,—t; = At; thus,

t\Y?: [, —-AN\"? t
()2 s e

t t, 2t,

and equation (3.11) will have the form

vy At Af (1 1)
—=l1-—1-——}=1-At| —+—)< .
v ( ZI)( 47) 2t 4~ 1 (3.12)
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to a first approximation, and where ¢t =t,. Using the above equation, the
red shift parameter is given by

1/1 1
=—(=+-)at 3.13
z 2(27 t) ( )
Again defining ¢ At = R, we obtain
1/1 1
=——|—+-]R 3.14
T2 (27 t) (3.14)

which is the Hubble law. The Hubble constant, according to the above

calculation, is
1/1 1
H==-{—+- 15
2(27‘ t) (3.15)

In the next section a maximal extension of the coordinate system
x* =(t, 0, ¢, ) is introduced and discussed.

4. MAXIMAL EXTENSION OF THE METRIC

In the previous sections one can notice the interesting properties of
the singularity at ¢ =27. We now investigate this singularity. The analysis
is similar to that for the Schwarzschild metric (see, for instance, Carmeli,
1977, 1982).

We start our discussion by finding the null directions, in the coordinate
system x* = (¢, 8, ¢, ), along which d8 =d¢ =0, given by

ds’=V'ar-T*Vdy*=0 (4.1)

Hence the null directions satisfy the equation

—=xTV 4.2
™ (42)
Substituting the value of V given by equation (2.16), we obtain
dt T
—=x=(27—t 4,
4 ; 2r—1) (4.3)

In the region <27, the opening of the light cone has an angle 7 at t =0,
and decreases to zero as ¢ increases to 27. On the other hand, in the region
t > 27, the parametric lines of the coordinate ¢t become spacelike and those
of the coordinate ¢ become timelike. Consequently, the light cones rotate
90° (see Figure 1), and their openings decrease from 7 (at 1>27,) to =T
(at t = 00).
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Fig. 1. Orientations and openings of the light cones.
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Comparing now the two different figures of the light cones on both
sides of =27, we see that the regions on the two sides of the universal
surface t =27 do not join smoothly there.

At the cosmological time ¢ =27 the components of the metric (2.5) gy
diverge and gs;, g»; vanish, thus giving the impression of the existence of
a singularity. The determinant of the metric (2.5), g = — T*t* sin? , however,
is regular at ¢ =27, while the Ricci scalar, given in Appendix A [equation
(A.10)] vanishes.

It follows that the singularity at ¢ =27 is not an intrinsic feature of the
metric (2.5) and is different from that at + =0, but rather is a property of
the coordinate system used in expressing the metric.

We now introduce a new coordinate system, x'* = (u, 8, ¢, v), in which
light rays everywhere have the slope dx’>/dx®=+1. The transformation of
coordinates is as follows:

¢ 1/2 3
u=<1——> el/4 cosh(Ti)
27 47

N 172 v t (1<2r7) (4.4)
v= (1 —§—> e'/4 sinh( TZ—)
T T J
¢ 1/2 A
u=(5~-—1) ef/4751nh<T4i>
T T
p 1/2 y ‘1] } (t>27) (4.5)
= = t/4T .
U_<27 1) e cosh(TM)}

The inverse transformation is given by

t
u2_02=(1_2_> el/ZT (4.6)

T
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both for t <27 and t>27, and
=47/ T) tgh™(v/u) (t<<27) (4.7a)
¢ =(47/T) tgh™(u/v) (t>271) (4.7p)

It will be noticed that u is the timelike coordinate, while v is the
spacelike one; both u and v are dimensionless.
The metric tensor g, in the new coordinate system has the form

20 0 0

0 -t 0 0
= 4.8
Ew=lo o —(sin® 0+ T*Vcos® ) ghs (48)

0 0 g5 =f 2
where the function f depends on ¢ alone and is defined by
3243
2 — —t/27
f — e

=a transcendental function of u®— v? (4.9)

and the components g5, = g5, have the form

—(27-—t)1/2|:cosh(Tll’):!_1 (r<37)

42T 4r
g23=£—73/2 e %" cos 6

! (t—-2~r)1/2[sinh<T%>:l_1 (r>271)
(4.10)

The metric (4.8) does not have a singularity at ¢t =27; the only singularity
in this metric is at 1 =0.

The new coordinates give an analytic extension S’ of the limited region
of spacetime S which is described without singularity by the coordinate
system x* = (¢, 0, ¢, ¢) with t <27, The metric in the extended region joins
on smoothly, and without singularity, to the metric at the boundary of the
region S at t =27 (see Figure 2). The extended region S’, moreover, is the
maximal possible singularity-free extension of the region S. The properties
indicated in Figure 2 are a direct consequence of equations (4.6) and (4.7).
The region I in Figure 2 corresponds to 0=t <27. An object moving from
the hyperbola ¢ =0 will cross the straight lines s = const in the direction of
increasing ¢, which means expansion. On the other hand, in region II
(t>27), the same object will cross the straight lines (i =const) in the
direction of decreasing i, which means contraction.
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t=271,u=-¥ y=const t=27,u=v

w=const

L

W

0

Fig. 2. Maximal extension of the metric in the u, v plane.

5. SUMMARY AND CONCLUDING REMARKS

In this paper we introduced and discussed a new homogeneous and
nonisotropic cosmological metric describing a closed and nonstatic universe.
The most interesting property of this universe is its development in time.

At the very beginning, our universe has the shape of an infinitesimal
thin string with an infinite length, and in time it evolves into the shape of
a symmetrical ellipsoid. This result is due to an expansion in two spatial
directions, and a contraction in the third one.

At the cosmological time ¢ =27, there exists a “‘singularity,” which was
discussed in detail in Section 4. At this time the expansion along the two
spatial directions ceases and contraction begins, while along the other
direction the contraction continues; thus, the whole universe contracts
toward a singularity.

As is well known, at the present time the universe is isotropic and
homogeneous (Carmeli ef al., 1981, 1983, 1984). Red shift measurements,
interpreted as a Doppler effect, indicate an expanding universe. Accordingly,
our metric cannot describe our universe at the present time. It suggests,
however, a new model for the early inflationary universe.

APPENDIX A

In this appendix, for the convenience of the reader, we give the
expressions for the Christoffel symbols, the Ricci tensor, the Ricci scalar,
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and the Einstein tensor in the coordinates x* =(t, 6, ¢, ¢}, where 6, ¢,
are the Euler angles, 0= 0=7,0=<=¢ =27, 0= ¢ <47
The metric is given by

vt oo 0 0
0 - 0 0
— Al
Bu 0 0 —(*sin0+T?*Vcos’0) —T?*Vcos (A1)
0 0 ~T?*V cos -T’V
vV 0 0 0
0 —t? 0 0
B = A2
& 0 0 —t?sin"? 0 t2cosfsin?@ (A2)
0 0 tZcosfsin?8 —(T 2V '+t 2cot’0)
g=detg,, =—T*sin’0, —g=Ttsind (A.3)

where V is a function of ¢ only and T is a constant having a dimension of
time, presumably of the order of 10' years. Notice the existence of the
following simple relationships among the metric components, which show
that everything, except for g% (=g, V?), can be expressed in terms of g,
and gs3:

€= gusin® 0+g3;3c08" 6,  go3=g33Cos 0 (A4)
gl=gut™  g?=gut*sin"?0, g¥=-g,,t™*cos 0sin"? OA )
S
gl=gt  cot? 0+gy; T V2

The nonvanishing Christoffel symbols are given by
[=—3V7'V, T =W, TI%=V(tsin®0+3T*V cos®§)
9, =3T?VV cos 0, % =iT*VV, T§=t"
2

T*V TV
T= (7—— 1) sinfcosd, Tl =57 sing, T5,=t"' (A6)

2
sin"' @

TV
F%2=(l——it—2> cot 6, Ii,=—

F32=(%V_1V‘_t_l) COS 6, FS:},:%V_‘V

2%

2

T’V T’V
f2=(?—1> cos 6 cot 6 —1sin 6, I‘?3=—ét—2cot6

In the above and following formulas a dot denotes differentiation with
respect to the time coordinate .
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We use the following expression for the Ricci tensor (Carmeli, 1982):

1 a(v—gTl?%) &*Inv—-
R, = ( L w) §In £ _re,r8, (A7)
v—-g ax ax*ax

We then have
ROO:_V_I(%V_'-t_lV)a Ry = R, =Ry3=0

2

. T
R11=tv+(1—2—t2'> V+1, R12=R13=0

s 5 (A.8)
R,,=R,,sin” 6+ R;; cos” 6, R,;=R3;cos 8
Ry =3T*V(V+217'V+ T V)
The contravariant components are given by
p
R00=R00V2 R01= ROZ:R03=0
R11=R11t_4, R2=RY=0
(A9)

R**=R, t™*sin™? 6, R*®=—-R%cos §=—R,,t *cos sin"2 8
R*®=R, t*cot®> 6+ R;; T V2

The Ricci scalar is given by

oo 2, T
R=—{V+4t V+t2[<l 412)V+1]} (A.10)

The covariant components of the Einstein tensor are given by

. T
Goo=t_1V_1V+tm2(l—ﬁ)+t_2V_1, Go1 = Gpy = Go3 =0
TV
4’
Gy, = Gy, sin® 0+ G5 cos” 6, Goy = Gs3 c0s 0

. 3T*V?
Gyu=t"'"T*’VV-tT?V(1+ I+

Gll=—%t2V—tV— GIZ:G13=O

(A.11)

The contravariant components of the Einstein tensor are given by
GOO — G00V2 GOI = GOZ = GO3 =0
Gll= G“t_4, GIZ= Gl3=0
G?= Gyt ™*sin™? 6, G®=—-Gy,t™cos Hsin2 6

G¥ =Gt cot? 0+ Gy, T V2

(A.12)
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It will be noted that the dependence among the various components
of the Ricci and Einstein tensors is identical to that among the components
of the metric tensor as given by equations (A.4) and (A.5).

APPENDIX B

This appendix is devoted to results expressed in the tetrad (2.1):
w'=sin @ sin ¢ d¢ +cos ¢ d
w>=sin @ cos ¢ dp —sin ¢ d (B.1)
*=cos d¢+dy

Expressions for the field quantities in this tetrad system are obtained, as
usual, by coordinate transformations. Denoting dx'* = (dt, ', w”, ®>) and
x? =(1, 6, ¢, ¥), we obtain

1 0 0 0
ax’: _ 0 co.s ¥ s.in @singg 0 (B.2)
ox 0 —siny sinfcosy O
0 0 cos 6 1
The metric, which is diagonal, has the form
V' oo o0 0 €0 0 0 0
0 - 0 0 0 g, 0 0
T 11
= = B.3
Eu 0 0 -2 0 o 0 g, of &Y
0 0 0 =T 0 0 0 gy
V 0 0 0 g 0 0 0
0 —t2 0 0 0 g o0 0
(A = B4
8T =10 o - 0 0o o0 gV 0 (B4)
0 0 0 -T7*v? 0 0 0 T *Vig,
g=detg., =-T, V-g=T¢ (B.5)

where goo, 211, 8%, and g'' are the components of the metric in the coordin-
ate system x* = (¢, 6, &, ¢), given explicitly in Appendix A.
The Ricci tensor is given, for instance, by

ax'* ax'
o R (B.6)

ax

ax
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We obtain .
R® o0 0 0
0 R"™ o 0
RY = B.7
T 0 0 RY" 0 (B.7)

0 0 0 Ry;THV?
Ry O 0 0
r 0 R, O 0
Ri=\0 o R, 0 (B.8)
0 0 0 R
R =R (B.9)
where the expressions on the right-hand side of (B.7)-(B.9) are given
explicitly in Appendix A.
For the Einstein tensor we obtain

G 0 0 0
0 G" 0 0
pmy
Gt 0 0 Gh 0 (B.10)
0 0 0 GyuTiv?

Gow O 0 0
0 G, 0 0
0 0 G, 0
0 0 0 G

where the expressions on the right-hand side of the above equations are
given explicitly in Appendix A.

Notice that the same dependence exists between the components gL,,
R}, and G/,.

Gl = (B.11)
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